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Abstract
Using conformal field theoretic methods we calculate correlation functions of
geometric observables in the loop representation of the O(n) model at the
critical point. We focus on correlation functions containing twist operators,
combining these with anchored loops, boundaries with SLE processes and
with double SLE processes. We focus further upon n = 0, representing self-
avoiding loops, which corresponds to a logarithmic conformal field theory
(LCFT) with c = 0. In this limit the twist operator plays the role of a 0-weight
indicator operator, which we verify by comparison with known examples.
Using the additional conditions imposed by the twist operator null states, we
derive a new explicit result for the probabilities that an SLE8/3 winds in various
ways about two points in the upper half-plane, e.g. that the SLE passes to the
left of both points. The collection of c = 0 logarithmic CFT operators that
we use deriving the winding probabilities is novel, highlighting a potential
incompatibility caused by the presence of two distinct logarithmic partners to
the stress tensor within the theory. We argue that both partners do appear in the
theory, one in the bulk and one on the boundary and that the incompatibility is
resolved by restrictive bulk–boundary fusion rules.

PACS numbers: 11.25.Hf, 02.50.Ey, 05.50.+q

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well established that many two-dimensional statistical physics systems, including the
O(n) and percolation models which we consider in this paper, can be mapped to an equivalent
loop representation [1]. Much of the recent interest in these loop representations of statistical
systems has been motivated by the success of Schramm–Loewner evolution (SLE) in describing
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loops emanating from boundaries [2, 3]. Progress has also been made in quantifying the
effects of the fluctuations due to background loops, dubbed the ‘loop-soup’, via conformal
loop ensembles (CLE) [4].

Alternately the loop model can be mapped to a height model via the Coulomb gas, which
renormalizes onto a conformal field theory (CFT) when taken to the continuum limit. This
allows us to study these loop models using the powerful methods of CFT [5, 6]. However,
the unitary minimal model CFTs that are most familiar from the study of statistical mechanics
are insufficient to describe the full behavior that can be observed in the loop models. We
are forced to consider the extended Kac table, which implies the existence of logarithmic
modules in the CFT. Logarithmic (L)CFTs have been studied extensively [7, 8], but little
progress has been made in completing the association to general loop models.

In [9] operators were identified in the Coulomb gas that when applied in sets of two,
change the weight of all loops that separate the insertion points. When the new weight is
chosen to be the negative of the original we have the twist operators, first studied in [10].
Inserting a pair of twist operators modifies the partition function with a positive or negative
weight for each configuration depending on the parity of the number of loops crossing a defect
line between the two points. When background loops are suppressed (such as in the n = 0
limit of the O(n) model, which is identified with self-avoiding walks and loops and SLE/CLE
parameter κ = 8/3) the correlation functions can be used either directly or through a small n
expansion to determine the topological properties of loops with respect to the twist points.

Regularization issues arise associated with the scaling properties of small loops in the
neighborhood of the twist operators. In [10] these issues are addressed by inserting additional
twist operators and isolating those solutions where loops separate pairs of these operators. The
distance between the pairs of operators sets a scale preventing the profusion of small loops.

In this paper we fix the scale by other means: in the bulk we fix a scale for our loops
using 2-leg operators that ensure that the loops pass through two given points. The result is
equation (49) the probability within the ensemble of self-avoiding loops anchored at z3 and z4

that the loop separates z1 from z2.
In regions with boundaries we use boundary N-leg operators to set our scale. We begin

with a pair of 1-leg or SLE operators, and include only one twist operator, which marks parity
against the boundary, and recover Schramm’s result for the left crossing SLE probability [11]
at κ = 8/3. Next we include a result for two self-avoiding walks anchored at common points
using a pair of boundary 2-leg operators along with a twist operator. We see that at κ = 8/3
this is equivalent to a result first reported in [12] for double SLE.

We then extend Schramm’s result for the self-avoiding walk by including a second twist
operator which allows us to determine the weights of SLE8/3 conditioned to wind about two
points in any of the four possible ways. For example, given an SLE8/3 process in the upper
half-plane from 0 to infinity the probability of a double left passage with respect to the two
points rA exp(ivA) and rB exp(ivB) is

cos2(vA/2) cos2(vB/2) +
sin(vA) sin(vB)

4

[
1 − σ 2F1

(
1,

4

3
; 5

3

∣∣∣∣1 − σ

)]
, (1)

where we have defined

σ = r2
A − 2rArB cos(vA − vB) + r2

B

r2
A − 2rArB cos(vA + vB) + r2

B

. (2)

This result is the half-plane version of (77); equations (77)–(80) convey all four of the winding
probabilities in either the upper half-plane or infinite strip coordinates.

This analysis also provides an additional example of a physically meaningful c = 0 LCFT.
Recently a great deal of attention has been paid to the boundary CFT of critical percolation
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[13–15], which is an example of a c = 0 LCFT generated by a zero weight module with
a second-order null state. This CFT possesses a transparent interpretation in terms of the
equivalent SLE6 arc representations. In the O(n = 0) model the chiral components of a
twist operator belong to the same LCFT module as the percolation SLE operator. Thus the
O(n = 0) twist operators give us a second physical picture with which to probe this LCFT.

Because the operators we consider are stationary in the Kac table as we continuously vary
the loop fugacity of the model, we expect that our correlation functions behave qualitatively
like analogous functions in c > 0 theories, obeying null state differential equations and
exhibiting factorization between holomorphic and anti-holomorphic sectors. In spite of an
incomplete catalog of the c = 0 CFT operator content the assumption seems justified and we
observe a simple way of combining the holomorphic and anti-holomorphic sectors in the bulk
theory. We observe that the leading terms of fusions associated with bulk logarithmic modules
tend to have nonzero spin. We identify one such fusion that yields a weight one, spin one,
leading fusion product for all values of n, indicating the presence of a non-Kac zero weight
staggered logarithmic module in all corresponding CFTs; this is precisely the type of module
used in deriving Schramm’s formula [11].

In [14, 16] the point was made that at c = 0 the logarithmic theories generated by the
two modules with second order null states, M1,2 and M2,1, are incompatible in the sense
that the two point function between logarithmic operators from the two theories cannot be
defined. This means that the two modules cannot both be present in the same chiral theory.
Our calculation of (1) involves a correlation function containing bulk twist operators, φ2,1,
and boundary SLE operators, φ1,2. The solutions that we find illustrate that the two modules
can indeed coexist in this mixed case, with one appearing in the bulk sector and one in the
boundary sector, so long as the bulk–boundary fusion products belong exclusively to the
minimal subsector common to both modules.

In section 2 we calculate several twist operator correlation functions in the O(n) model
for general n. In section 3 we specialize these results to the self-avoiding loop ensemble. In
section 4 we derive a new SLE8/3 result by solving a six point chiral correlation function. In
section 5 we discuss the implications of this chiral correlation function for the c = 0 LCFT.
Our conclusions are in section 6.

2. The O(n) loops with twist operators

We begin this section with a brief description of the loop representation of the O(n) model
and a quick summary of the steps required to associate it with a meaningful CFT. For a more
complete treatment we refer the interested reader to the pertinent references.

The standard loop representation of the O(n) model [1] begins with n-component spins
s(ri) with squared norm n on each site of a lattice � governed by the partition function

Z� = Tr
∏
〈ij〉

(1 + xs(ri) · s(rj )). (3)

We expand the product and associate a graph on � to each term by including the bond between
ri and rj if the xs(ri) · s(rj ) factor appears in the factor and excluding the bond if it does not.
Now the trace per site of an odd number of spin components is zero, so the only graphs that
contribute are those composed entirely of closed loops.

The form of the resulting loop partition function is particularly simple if we choose the
honeycomb lattice, HC, for �. In this case the loops can visit each site a maximum of one
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time and the per site trace, Trsa(ri)sb(ri) = δab, means that each loop earns a net weight n.
Combining this with the weight x per occupied bond yields the partition function

ZHC =
∑
�

nNxL, (4)

where the sum is over all loop configurations � on the honeycomb lattice, N the number of
loops and L the total length of the loops in each configuration. For small values of x, long loops
are repressed and the model flows to the vacuum under renormalization. For large values of x
long loops carry more weight and the system flows to a fixed point of densely packed loops
under renormalization. The boundary between these two regimes is xc = (2 +

√
2 − n)−1/2,

for which the system is critical and flows to the dilute fixed point [1].
We can map the loop model to the Coulomb gas by replacing the sum over configurations,

with a sum over configurations of directed loops with a complex local weight that recreates
the factors related to the non-local observable N . To recreate these factors we associate a
weight exp(iχθ/2) to each vertex containing a loop, where θ is the angle the loop turns though
while traversing the vertex. Each loop must close on itself thereby picking up a total weight of
exp(±iχπ) depending on whether it is directed clockwise or counter-clockwise. Taking the
trace over the directions in each directed loop configuration is equivalent to an undirected loop
configuration with weight 2 cos(χπ) per loop, so that by careful selection of χ we recover the
O(n) model weights.

The directed loops are equivalent to level lines of a height variable on the dual of our
lattice if we insist that the height variable increases (decreases) by π whenever we cross a loop
pointing to the left (right). The power of the Coulomb gas formalism lies in the assumption
that this height model flows into a Gaussian free field under renormalization, which allows
us to make precise calculations in the continuum limit of these models using field theory
techniques.

There has been a great deal of success in using operators in the height model to glean
information about the associated loop model and to derive relations between the model and
the CFT describing its continuum limit. We emphasize that our description of the mappings
between these models is by no means complete, as there are a variety of subtleties that we
either simplify or omit completely.

It can be argued that the two non-trivial fixed points of the O(n) loop model correspond
to SLE/CLEκs with

n = 2 cos

(
(κ − 4)π

κ

)
,

{
(2 < κ < 4) dilute
(4 < κ) dense.

(5)

Alternately the correspondence with the Coulomb gas implies that these loop models are
described by CFTs with central charge and conformal weights given by

c = (6 − κ)(3κ − 8)

2κ
and hr,s = (κr − 4s)2 − (κ − 4)2

16κ
. (6)

In this paper we focus primarily on the dilute regime with 2 < κ < 4 relating to the
critical O(n) model. In [10] twist operators were identified that change the weight of all loops
that separate two twist operators so that the new weight associated with these loops is −n.
The partition function becomes

Z =
∑
�

(−1)Ns nNxL, (7)

where Ns is the number of loops separating the twist operators. In [10] it was shown that the
twist operator was a Kac operator with weight

htwist = h̄twist = h2,1 = 3κ − 8

16
. (8)
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In this paper we utilize the second-order null-state descendant of this Kac operator to derive
differential equations in twist operator correlation functions.

2.1. Twist operators and anchored O(n) loops in the bulk

In order to avoid the complications that small loops cause to twist operators, we are interested
in establishing a scale by anchoring our bulk loops with 2-leg operators. In [17], the exponent
for these operators are calculated in the Coulomb gas formulation of the loop model. In the
Coulomb gas the 2-leg operators are equivalent to the insertion of a vortex and anti-vortex,
where the (anti-)vortex has two directed lines flowing into (out of) the point. Because of
this, no path can have both of its ends connected to a single 2-leg operator and furthermore,
the paths associated with these vortices have weight 1 not n. Using the Coulomb gas vertex
association it can be shown [17, 18] that these operators have weight

h2−leg = h̄2−leg = h0,1 = 8 − κ

16
, (9)

where we use the Kac weight convention to give the weight of these operators even though
the indices are not positive integers. This means that the 2-leg operators do not have null state
descendants, nor related differential equations, for general κ .

The correlation function we calculate includes one pair of 2-leg operators and one pair
of twist operators. As per the usual CFT approach, we focus on the holomorphic sector and
later sew this together with its anti-holomorphic counterpart [5]. Conformal symmetry fixes
the form of the correlation function as

〈φ2,1(z1)φ2,1(z2)φ0,1(z3)φ0,1(z3)〉 = z
−2h2,1

21 z
−2h0,1

43 F

(
z21z43

z31z2

)
, (10)

where we have used the shorthand zij := zi − zj .
The null state

(
2(1 + 2h2,1)L−2 − 3L2

−1

)|φ1,2〉 implies that the differential operator(
h0,1

z2
41

− ∂z4

z41
+

h0,1

z2
31

− ∂z3

z31
+

h2,1

z2
21

− ∂z2

z21

)
− 3∂2

z1

2(1 + 2h2,1)
, (11)

annihilates the correlation function [5]. If we apply this differential operator to the correlation
function and take the standard limit {z1, z2, z3, z4} → {0, x, 1,∞} then we recover the
following condition for F(x)

0 = F ′′(x) +
(8 − 2κ) − (8 − κ)x

4x(1 − x)
F ′(x) − κ(8 − κ)

64(1 − x)2
F(x). (12)

Solving (12) we find the x ≈ 0 conformal blocks

F1,1(x) = (1 − x)−κ/8
2F1

(
−κ

4
,

4 − κ

4
; 4 − κ

2
; x

)
and (13)

F3,1(x) = xκ/2−1(1 − x)−κ/8
2F1

(
κ − 4

4
,
κ

4
; κ

2
; x

)
, (14)

where the subscript indicates the related fusion product as z2 → z1. The fusion products in
φ2,1 × φ2,1 = 1 + φ3,1 are the identity and the leading order energy density operator.

In contrast, there is an ambiguity in the conformal blocks as z2 → z3. The fusion products
in φ2,1 × φ0,1 = φ1,1 + φ−1,1 are operators with weights 0 and 1 for all values of kappa. The
weights of these operators differ by an integer and the conformal blocks exhibit logarithmic
terms when z2 → z3. These facts indicate a staggered logarithmic module with three key
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operators: �0, a weight 0 primary operator; ∂�0, the weight 1 primary descendant of �0; and
�1, the weight 1 logarithmic partner to ∂�0.

This structure is similar to the module I1,4 discussed in [14], but appears for all values of
kappa, not just those with c = 0. Speculatively, this module may be related to the zero weight
indicator operator used to gauge the position of a point relative to a given set of paths, e.g. in
Schramm’s derivation of the SLE left passage probability [11].

The nature of the staggered module is such that we cannot fix a unique expression for
the corresponding conformal block G1,1(1 − x) because we are free to arbitrarily modify our
choice by adding a multiple of G−1,1(1 − x). We write an expression for the x ≈ 1 blocks
that includes this ambiguity. We do this by applying the logarithmic series expansion for the
hypergeometric function, found for example in [19], to (13) and (14) and combining these
blocks to have a leading term of unity

G1,1(1 − x) = A
(1 − κ/4)(2 − κ/4)

(2 − κ/2)
F1,1(x) + (1 − A)

(1 + κ/4)(κ/4)

(κ/2)
F3,1(x), (15)

and

G−1,1(1 − x) = (1 − x)1−κ/8
2F1

(
4 − κ

4
,−κ

4
; 2; 1 − x

)
. (16)

We will discuss the ambiguity encoded by A again once we have obtained physical solutions
for the correlation function.

We now introduce a convenient normalization for the conformal blocks

F1,1(x) = F1,1(x),

F3,1(x) = (1 + κ/4)(κ/4)(2 − κ/2)

(κ/2)(1 − κ/4)(2 − κ/4)
F3,1(x),

G1,1(1 − x) = (2 − κ/2)

(1 − κ/4)(2 − κ/4)
G1,1(1 − x), and

G−1,1(1 − x) = (1 + κ/4)(κ/4)

(κ/2 − 1)
G−1,1(1 − x).

(17)

We choose F1,1(x) so that we recover the disconnected limit

〈φ2,1(z1)φ2,1(z2)φ0,1(z2)φ0,1(z2)〉 ≈ 〈φ2,1(z1)φ2,1(z2)〉〈φ0,1(z2)φ0,1(z2)〉 (18)

when |z1 − z2| and |z3 − z4| 	 |z1 − z3|. The other blocks are normalized to simplify the
crossing relations, which become

F1,1(x) = G1,1(1 − x) + (1 − A)G−1,1(1 − x),

F3,1(x) = G1,1(1 − x) − AG−1,1(1 − x),

G1,1(1 − x) = AF1,1(x) + (1 − A)F3,1(x), and

G−1,1(1 − x) = F1,1(x) − F3,1(x).

(19)

We need to study the monodromy of our blocks as we move x around the points 0 and
1, in order to construct a single-valued physical solution. Moving clockwise around zero, the
x ≈ 0 blocks transform as

F1,1(x)
0�−→ F1,1(x),

F3,1(x)
0�−→ e−κπ iF3,1(x).

(20)

The effect of moving around 1 is more complicated due to the logarithm in the expansion
of G1,1(1 − x) around x = 1. To determine the effect of these logarithmic terms we isolate

6



J. Phys. A: Math. Theor. 42 (2009) 235001 J J H Simmons and J Cardy

them from the remaining algebraic terms by applying the logarithmic series expansion to
(15). We are careful to maintain our modified normalizations and after some simplifications
involving gamma functions we find that

G1,1(1 − x) = (1 − x)−κ/8S(1 − x) +
1

2π
tan (πκ/4) ln(1 − x)G−1,1(1 − x), (21)

where S(1−x) is the regular power series contribution, which is regular about the point x = 1.
On the other hand, taking x clockwise around 1 the logarithm transforms as

ln(1 − x)
1�−→ ln(1 − x) − 2π i. (22)

Thus moving clockwise around 1 we find that

G1,1(1 − x)
1�−→ eκπ i/4(G1,1(1 − x) − i tan(πκ/4)G−1,1(1 − x)),

G−1,1(1 − x)
1�−→ eκπ i/4G−1,1(1 − x),

(23)

which can be combined with (19) yielding

F1,1(x)
1�−→ sec

(
κπ

4

)
F1,1(x) + i eκπ i/4 tan

(
κπ

4

)
F3,1(x),

F3,1(x)
1�−→ eκπ i/2 sec

(
κπ

4

)
F3,1(x) − i eκπ i/4 tan

(
κπ

4

)
F1,1(x).

(24)

This completes our analysis of the chiral solution space. Now we need to sew together
holomorphic and anti-holomorphic conformal blocks into a single-valued physical solution.
Based on (20) we see that the physical solution must be of the form F1,1(x)F1,1(x̄) +
CF3,1(x)F3,1(x̄) . If we combine this with the condition that the correlation function remain
unchanged when we move x around 1, then we can uniquely determine the physical solution

|F1,1(x)|2 − |F3,1(x)|2 = G1,1(1 − x)G−1,1(1 − x̄)

+G−1,1(1 − x)G1,1(1 − x̄) + (1 − 2A)|G−1,1(1 − x)|2. (25)

The negative coefficient serves as a reminder that we are working within a non-unitary theory.
As we expect, the ambiguity represented by A in (15) does not affect the form of our

solution, which is easily seen since A is absent in the x ≈ 0 blocks of (25). In terms of the
x ≈ 1 blocks the explicit appearance of A as a coefficient of |G−1,1(1 − x)|2 serves to cancel
out the implicit dependence on A found in the G1,1(1 − x) block.

The non-diagonal combination of x ≈ 1 blocks is another important feature of this
solution, equivalent to a leading fusion term with nonzero spin. As z2 → z3 the fusion to the
logarithmic module with highest weight operator �0 generates the block G1,1(1 − x), while
the block G1,−1(1−x) is generated by the regular subsector of this module with highest weight
operator ∂�0. Thus, as z2 → z3 the operator product expansion observed in this correlation
function is

φ2,1(r + δr)φ0,1(r) = |δr|−κ/4(δr) · ∇�0(r) + O(|δr|2−κ/4), (26)

where φ2,1(r) and φ0,1(r) represent respectively the factorized bulk twist and 2-leg operators
used to construct this correlation function and �0(r) := �0(z)�0(z̄) is the scalar bulk version
of the zero weight operator described above.

Restoring all relevant factors and the implicit dependence on the four coordinates we have

〈φ2,1(z1, z̄1)φ2,1(z2, z̄2)φ0,1(z3, z̄3)φ0,1(z4, z̄4)〉

=
∣∣∣∣z21

z43

∣∣∣∣
2 ∣∣∣∣z43z31z42

z3
21z32z41

∣∣∣∣
κ/4

[∣∣∣∣2F1

(
−κ

4
,

4 − κ

4
; 4 − κ

2
; z21z43

z31z42

)∣∣∣∣
2

− 
(

4+κ
4

)4


(
6−κ

2

)2


(

2+κ
2

)2


(
8−κ

4

)4

∣∣∣∣z21z43

z31z42

∣∣∣∣
κ−2 ∣∣∣∣2F1

(
κ − 4

4
,
κ

4
; κ

2
; z21z43

z31z42

)∣∣∣∣
2
]

. (27)
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2.2. Boundary O(n) paths and twist operators

In the previous sections we found an expression for a simple bulk correlation function using
2-leg operators and twist operators. In this section we derive analogous correlation functions
in regions with a boundary, anchoring paths to the boundary instead of loops in the bulk. In
addition to the twist operators we use the boundary N-leg operators. These can be identified
in the Coulomb gas as operators that change the boundary conditions by N steps within
some neighborhood of their insertion. This leads to the identification with the boundary
operator

hN−leg = h1,N+1 = N(4 + 2N − κ)

2κ
. (28)

In particular we emphasize that the correlation functions we calculate in this section differ
from the boundary correlation functions in [10] in that we only insert a single twist operator
into our correlation functions. The effect of the twist operator in this case is to indicate the
parity of loops separating the insertion point and boundary. If we have loops attached to the
boundary the twist operator may have an unimportant ambiguity in the overall sign depending
on which part of the boundary we choose to measure our parity from.

We first examine the correlation function which uses two 1-leg boundary operators to
encode an SLE process from x1 to x2 in the presence of a twist operator. The correlation
function takes the form

〈φ2,1(z, z̄)φ1,2(x1)φ1,2(x2)〉 = (z − z̄)−2h2,1(x2 − x1)
−2h1,2F

(
(z − z̄)(x2 − x1)

(z − x1)(x2 − z̄)

)
, (29)

and the null states of φ2,1 and φ1,2 imply that it is annihilated by

3∂2
z

2(1 + 2h2,1)
−

(
h2,1

(z̄ − z)2
− ∂z̄

z̄ − z
+

h1,2

(x1 − z)2
− ∂x1

x1 − z
+

h1,2

(x2 − z)2
− ∂x2

x2 − z

)
, (30)

and

3∂2
x1

2(1 + 2h1,2)
−

(
h2,1

(z − x1)2
− ∂z

z − x1
+

h2,1

(z̄ − x2)2
− ∂z̄

z̄ − x2
+

h1,2

(x2 − x1)2
− ∂x2

x2 − x1

)
, (31)

respectively. Applying these differential operators to the correlation function and letting
{z̄, z, x2, x1} → {0, x, 1,∞}, we find two differential equations governing F(x)

0 = F ′′(x) +
2(4 − κ) − (8 − κ)x

4x(1 − x)
F ′(x) − (6 − κ)

8(1 − x)2
F(x), and (32)

0 = F ′′(x) − 2(4 − κ) − (4 − 2κ)x

κx(1 − x)
F ′(x) − (3κ − 8)

4κ(1 − x)2
F(x). (33)

The only common solution to both of these differential equations is

F(x) = 2 − x

2
√

1 − x
. (34)

In the strip S = {s = u + vi | u ∈ R, 0 < v < π} this correlation function takes on a
simple form. We map the two anchoring points to ±∞ using

s(z) = log

(
z − x1

z − x2

)
, (35)
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so that the cross ratio is

x = (z − z̄)(x2 − x1)

(z − x1)(x2 − z̄)
= 1 − (z̄ − x1)(x2 − z)

(z − x1)(x2 − z̄)
= 1 − e2iv. (36)

Thus, in the strip the correlation function can be written

〈φ2,1(s, s̄)φ1,2(−∞)φ1,2(∞)〉S = 〈φ2,1(s, s̄)〉S〈φ1,2(−∞)φ1,2(∞)〉S cos(v), (37)

which is independent of our choice of κ .
We also include the correlation function describing a combination of a twist operator and

two 2-leg boundary operators. The two paths generated by the 2-leg operators can be thought
of as a double SLE: two SLE processes starting from a common point and driven toward a
common point while conditioned not to meet. This correlation function is of the form

〈φ2,1(z, z̄)φ1,3(x1)φ1,3(x2)〉 = (z − z̄)−2h2,1(x2 − x1)
−2h1,3F

(
(z − z̄)(x2 − x1)

(z − x1)(x2 − z̄)

)
, (38)

and the null states of φ2,1 and φ1,3 imply that it is annihilated by the differential operators

3∂2
z

2(1 + 2h2,1)
−

(
h2,1

(z̄ − z)2
− ∂z̄

z̄ − z
+

h1,2

(x1 − z)2
− ∂x1

x1 − z
+

h1,2

(x2 − z)2
− ∂x2

x2 − z

)
, (39)

and

∂3
x1

h1,3(1 + h1,3)
− 2

h1.3

(
h2,1∂x1

(z − x1)2
− ∂z∂x1

z − x1
+

h2,1∂x1

(z̄ − x2)2
− ∂z̄∂x1

z̄ − x2
+

h1,3∂x1

(x2 − x1)2

− ∂x2∂x1

x2 − x1

)
−

(
2h2,1

(z − x1)3
− ∂z

(z − x1)2
+

2h2,1

(z̄ − x2)3
− ∂z̄

(z̄ − x2)2

+
h1,3

(x2 − x1)3
− ∂x2

(x2 − x1)2

)
, (40)

respectively. The corresponding differential equations are

0 = F ′′(x) +
2(4 − κ) − (8 − κ)x

4x(1 − x)
F ′(x) − 8 − κ

4(1 − x)2
F(x), and (41)

0 = F ′′′(x) − 2(16 − 3κ + (3κ − 8)x)

κx(1 − x)
F ′′(x)

+
6(8 − κ)(4 − κ) + 4(6 − κ)(3κ − 8)x − (8 − κ)(3κ − 8)x2

κ2x2(1 − x)2
F ′(x)

+
(3κ − 8)(8 − κ)(2 − x))

κ2x(1 − x)3
F(x), (42)

which only have one common solution

F(x) = 1 +
8 − κ

6 − κ

x2

4(1 − x)
. (43)

In the strip geometry this becomes

〈φ2,1(s, s̄)φ1,3(−∞)φ1,3(∞)〉S

= 〈φ2,1(s, s̄)〉S〈φ1,3(−∞)φ1,3(∞)〉S

(
1 − 8 − κ

6 − κ
sin2(v)

)
.

(44)

9
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Figure 1. The two topological weights for a pair of 2-leg operators (circles; red online) and a pair
of twist operators (crosses; blue online) at n = 0.

3. The case n = 0: self-avoiding loops

In the previous section we found expressions for several O(n) correlation functions with
n ∈ (−2, 2). Now take n = 0; in this limit the O(n) loop model corresponds to self-avoiding
walks and loops and has corresponding SLE/CLE parameter κ = 8/3. With n = 0 all loops
are suppressed and the only contribution to the partition function is the empty set so that
Z = 1. In [10] this was circumnavigated by taking a small n expansion and keeping the
first-order term, which was equivalent to conditioning the configurations on the existence of
one loop. While we need to do the same thing in spirit, our job is made trivial by the inclusion
of 1- or 2-leg operators. As we discussed above the loops associated with these operators have
unit weight and are not suppressed even at n = 0. With n = 0 the weight of the twist operator
is htwist = 0. As we will see, this reflects the fact that, in the absence of background loops, the
twist operator has a similar interpretation to Schramm’s indicator operator.

3.1. The anchored self-avoiding loop with twist operators

We return to the bulk correlation function with two 2-leg operators and two twist operators.
Because of the 2-leg operators with weight h2−leg = 1/3, at n = 0 we are restricted to those
configurations with a self-avoiding loop (SAL) anchored at z3 and z4. The total weight of
these allowed configurations is given by the two point function

Z = 〈φ0,1(z3, z̄3)φ0,1(z4, z̄4)〉 = |z34|−4/3. (45)

With the inclusion of the twist operators we can further decompose Z into two separate
weights based on how the anchored SAL interacts with the twist defect. The two relevant
possibilities are illustrated in figure 1. The weight of configurations in which the anchored
loop segregates the two twist defects is denoted by Zn. The weight of configurations where
the loop fails to separate the twist defects is Zp. The index refers to whether the weight of the
contribution is positive or negative with respect to the twist defect.

Now in terms of these weights it should be apparent that

Z = Zp + Zn, and (46)

Ztwist = Zp − Zn, (47)

with the twist partition function given by letting κ = 8/3 in (27)

Ztwist =
∣∣∣∣ z31z42

z2
43z32z41

∣∣∣∣
2/3

[∣∣∣∣2F1

(
−2

3
,

1

3
; 2

3
; z21z43

z31z42

)∣∣∣∣
2

−  (5/3)6

 (4/3)4  (7/3)2

∣∣∣∣z21z43

z31z42

∣∣∣∣
2/3 ∣∣∣∣2F1

(
−1

3
,

2

3
; 4

3
; z21z43

z31z42

)∣∣∣∣
2
]

. (48)
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Figure 2. On the left is a plot of Pn(0,∞; 1, •), on the right is a plot of Pn(•, ∞; 1, −1). Circles
(red online) indicate the positions of the 2-leg operators. The triangle (blue online) marks the
position of the twist defect, which sits away from infinity.

This allows us to determine the probability that a SAL separates z1 and z2 in the upper
half-plane, given that the loop passes through z3 and z4

Pn(z1, z2; z3, z4) = Zn

Z
= Z − Ztwist

2Z

= 1

2

[
1 −

∣∣∣∣ 1

1 − x

∣∣∣∣
2/3 ∣∣∣∣2F1

(
−2

3
,

1

3
; 2

3
; x

)∣∣∣∣
2

+
 (5/3)6

 (4/3)4  (7/3)2

∣∣∣∣ x

1 − x

∣∣∣∣
2/3 ∣∣∣∣2F1

(
−1

3
,

2

3
; 4

3
; x

)∣∣∣∣
2
]

, (49)

in terms of the cross ratio x = z21z43/z31z42. Plots of this probability are included
in figure 2.

As x goes to 0 the twist defects and loop are well separated and the probability that the
loop segregates the twist defects also goes to zero. Maximum value for Pn occurs when cross
ratio goes to 2. Because of global conformal symmetry we are free to fix the position of three
of our operators. If we place the two 2-leg operators at ±1 and one of the twist operators at
infinity, then placing the second twist operator at the origin should maximize the probability
of sitting inside the anchored loop, this corresponds to x = 2. The value of Pn for x = 2 is

P max
n = 1

2
+

9(5/6)6

4π3
≈ 0.6501 . . . . (50)

As a final comment for n = 0 we note that the weight Zp is equal to a related correlation
function with the twists replaced by magnetization operators. Pairs of magnetization operators
behave in a fashion akin to pairs of twist operators; they change the weight of loops that separate
the two points of insertion. But whereas twist operators take n → −n the magnetization
operators take n → 0. Since there can be no loop (or cluster hull) which separates them from
each other, the magnetization operators measure configurations where the two points reside in
the same cluster, which at n = 0 is exactly Pp. The magnetization operator is φ1/2,0 [1] and

〈φ1/2,0(z1, z̄1)φ1/2,0(z2, z̄2)φ0,1(z3, z̄3)φ0,1(z4, z̄4)〉 = Z[1 − Pn(z1, z2; z3, z4)]. (51)

For n = 0 the magnetization operator has conformal weight h1/2,0 = 0 = h2,1. Of course,
the fact that these weights are equal is a necessary condition for their correlation functions to
have common solutions.
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Figure 3. The two topological weights of the upper half-plane SLE8/3 (semi-circles; red online)
with respect to the twist defect (cross; blue online).

3.2. SLE8/3 with a twist operator

Now we take the correlation function 〈φ2,1(z, z̄)φ1,2(x1)φ1,2(x2)〉 and restrict ourselves to
n = 0 and therefore to an SLE8/3 process. We condition our correlation functions upon the
existence of an SLE path from x1 to x2 so that the partition function is

Z = Zp + Zn = 〈φ1,2(x1)φ1,2(x2)〉 = (x2 − x1)
−5/4, (52)

dividing the ensemble of configurations that contribute to this partition function into two parts
as in figure 3.

Because the twist operators are zero weight operators we may rewrite the result in the
strip (37) as

〈φ2,1(s, s̄)φ1,2(−∞)φ1,2(∞)〉S

〈φ1,2(−∞)φ1,2(∞)〉S

= Zp − Zn

Z
= cos v, (53)

the twist operator correlation function conditioned on the SLE8/3. The probability that the
SLE separates the twist operator from the bottom edge of the strip is

Pp(v) = Zp

Z
= 1 + cos v

2
= cos2(v/2). (54)

As we expect, this is Schramm’s formula for the left crossing probability in the strip with
κ = 8/3 [11].

3.3. Double SLE8/3 with a twist operator

We now reexamine the correlation function 〈φ2,1(z, z̄)φ1,3(x1)φ1,3(x2)〉 for the value n = 0.
Conditioning the system on the existence of a double SLE8/3 we have partition function

Z = Zp1 + Zn + Zp2 = 〈φ1,3(x1)φ1,3(x2)〉 = (x2 − x1)
−4, (55)

and the total mass of these configurations may be decomposed into three parts as in figure 4.
Our previous result (44) tells us that in the strip

〈φ2,1(s, s̄)φ1,3(−∞)φ1,3(∞)〉S

〈φ1,3(−∞)φ1,3(∞)〉S

= Zp1 − Zn + Zp2

Z
= 1 − 8

5
sin2(v), (56)

from which we determine the probability that the twist operator lies between the two SLEs

Pn(v) = Zn

Z
= 4

5
sin2(v). (57)

This matches the extension of Schramm’s formula to double SLEs derived in [12] for κ = 8/3.
We are unable to disentangle the contributions from Zp1 and Zp2 using twist operators because
of their parity symmetry.
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Figure 4. The three topological weights of the upper half-plane double SLE8/3 (semi-circles; red
online) with respect to the twist defect (cross; blue online).

Figure 5. The topological weights of the upper half-plane SLE8/3 (semi-circles; red online) with
respect to the twist defects at zA and zB (crosses; blue online).

In this section and the last we use twist operators to derive two SLE8/3 results having
been previously derived using zero-weight indicator operators. As we have observed in the
O(n = 0) model the twist operator is simply related to the indicator operator, aside from
issues of loop number parity.

4. A new SLE8/3 result

In the last section we showed that at κ = 8/3 the twist operator can be used in place of
Schramm’s zero weight indicator operator to derive various probabilities. In this section we
describe how twist operators can be used to calculate a new SLE8/3 result. We will use the
null-state of the twist operator as an extra condition to determine a correlation function with
one path; with a single path there will be no parity issues and the twist operator should play
the role of the indicator operator perfectly. We decompose the total weight of all SLE paths
in the infinite strip according to the relative winding around two points, labeled by A and B
in figure 5. We denote these weights by Zi , where the index i labels which of A and/or B are
adjacent to the bottom edge of the strip.

We can write down four possible correlation functions based on whether or not we place
twist operators at zA and/or zB . We fix all signs so that the twists parity is measured with
respect to the bottom edge. The four correlation functions and their expressions in terms of
our decomposition are

ZAB + ZA + ZB + ZO

Z
= 〈φ1,2(−∞)φ1,2(∞)〉S

〈φ1,2(−∞)φ1,2(∞)〉S

= 1, (58)

ZAB + ZA − ZB − ZO

Z
= 〈φ2,1(sA, s̄A)φ1,2(−∞)φ1,2(∞)〉S

〈φ1,2(−∞)φ1,2(∞)〉S

= cos(vA), (59)
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ZAB − ZA + ZB − ZO

Z
= 〈φ2,1(sB, s̄B)φ1,2(−∞)φ1,2(∞)〉S

〈φ1,2(−∞)φ1,2(∞)〉S

= cos(vB), (60)

ZAB − ZA − ZB + ZO

Z
= 〈φ2,1(sA, s̄A)φ2,1(sB, s̄B)φ1,2(−∞)φ1,2(∞)〉S

〈φ1,2(−∞)φ1,2(∞)〉S

= cos(vA) cos(vB) + sin(vA) sin(vB)

[
1 − σ 2F1

(
1,

4

3
; 5

3
; 1 − σ

)]
, (61)

with the parameter σ defined as

σ = cosh(uB − uA) − cos(vA − vB)

cosh(uB − uA) − cos(vA + vB)
. (62)

Of these equations the first three are either trivial or equivalent to (54). However,
equation (61) is new, and can be shown to be the unique function which obeys both the
boundary φ1,2 null-state and bulk φ2,1 null-state differential equations, while satisfying the
limiting condition

lim
u2−u1→∞

〈φ2,1(sA, s̄A)φ2,1(sB, s̄B)φ1,2(−∞)φ1,2(∞)〉S

〈φ1,2(−∞)φ1,2(∞)〉S

= cos(vA) cos(vB). (63)

We outline the derivation of this new quantity beginning with the form implied by
conformal symmetry in the upper half-plane

〈φ2,1(zA, z̄A)φ2,1(zB, z̄B)φ1,2(x1)φ1,2(x2)〉 = (x2 − x1)
−5/4λμF(λ,μ, ν), (64)

with variables chosen as functions of cross ratios that simplify the dependence on the strip
variables

λ = cos(vA) = (zA − x1)(x2 − z̄A) + (z̄A − x1)(x2 − zA)

2|zA − x1||x2 − zA| , (65)

μ = cos(vB) = (zB − x1)(x2 − z̄B) + (z̄B − x1)(x2 − zB)

2|zB − x1||x2 − zB | , and (66)

ν = cosh(uB − uA) = |zA − x1|2|x2 − zB |2 + |zB − x1|2|x2 − zA|2
2|zB − x1||x2 − zA||zA − x1||x2 − zB | . (67)

Each operator in the correlation function has a second-order null state, leading to six partial
differential equations for F(λ,μ, ν). These equations are cumbersome and we do not record
them here. However, they can be rearranged to yield

0 = λ(1 − λ2)∂λF (λ, μ, ν) − μ(1 − μ2)∂μF (λ, μ, ν) − ν(λ2 − μ2)∂νF (λ, μ, ν). (68)

If we make the change of variables

ρ = λμ = cos(vA) cos(vB), (69)

σ = ν − λμ −
√

(1 − λ2)(1 − μ2)

ν − λμ +
√

(1 − λ2)(1 − μ2)
= cosh(uB − uA) − cos(vB − vA)

cosh(uB − uA) − cos(vB + vA)
, (70)

τ =
√

(1 − λ2)(1 − μ2)

λμ
= tan(vA) tan(vB), (71)

then (68) implies 0 = ∂ρF (ρ, σ, τ ) indicating a reduction in the effective number of variables

F(λ,μ, ν) = H(σ, τ). (72)
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π

Figure 6. On the left is a contour plot of PAB as a function of sB = uB + vB i in the strip, given
that sA = 2π i/3. On the right is the detail of the function at uB = 0 (dashed thick line) and the
asymptotic value as uB → ∞ (thin line).

In terms of this new function the original differential equations are equivalent to

0 = (1 − σ)τH(σ, τ) − τ(1 + τ + σ − στ)∂τH(σ, τ ) + 3σ(1 − σ)∂σH(σ, τ), and (73)

0 = ∂2
τ H(σ, τ ), (74)

with two-dimensional solution space

H(σ, τ) = c1

{
1 + τ

[
1 − σ 2F1

(
1,

4

3
; 5

3

∣∣∣∣1 − σ

)]}
+ c2τ

(
σ

(1 − σ)2

)1/3

. (75)

To pick out the physical solution we enforce the limit (63), or equivalently

lim
σ→1

H(σ, τ) = 1. (76)

Since the second term diverges in this limit we require that c2 = 0 and (61) is the result of
setting c1 = 1 and restoring the other factors to the correlation function.

With (58)–(61) we can construct the probabilities Pi = Zi/Z for the winding
configurations in figure 5

PAB = cos2(vA/2) cos2(vB/2) +
sin(vA) sin(vB)

4

[
1 − σ 2F1

(
1,

4

3
; 5

3

∣∣∣∣1 − σ

)]
, (77)

PA = cos2(vA/2) sin2(vB/2) − sin(vA) sin(vB)

4

[
1 − σ 2F1

(
1,

4

3
; 5

3

∣∣∣∣1 − σ

)]
, (78)

PB = sin2(vA/2) cos2(vB/2) − sin(vA) sin(vB)

4

[
1 − σ 2F1

(
1,

4

3
; 5

3

∣∣∣∣1 − σ

)]
, (79)

PO = sin2(vA/2) sin2(vB/2) +
sin(vA) sin(vB)

4

[
1 − σ 2F1

(
1,

4

3
; 5

3

∣∣∣∣1 − σ

)]
. (80)

A typical example of the probability PAB in a strip is plotted in figure 6.
These probabilities are conformally invariant and apply to the upper half-plane as well as

in the strip. If the SLE in the upper half-plane runs from the origin to infinity then we only
need to know that vA(B) is the argument of zA(B) and that in the half-plane

σ = (zB − zA)(z̄B − z̄A)

(zB − z̄A)(z̄B − zA)
= r2

B − 2rArB cos(vB − vA) + r2
A

r2
B − 2rArB cos(vB + vA) + r2

A

. (81)
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5. Logarithmic conformal field theory

In the last section we saw that the chiral correlation function 〈φ2,1φ2,1φ2,1φ2,1φ1,2φ1,2〉 allows
two linearly independent solutions. These solutions are non-trivial and consistently satisfy all
of the null-state conditions of the φ1,2 and φ2,1 operators. To understand why this is significant
we recall the discussions of [14, 16] involving the logarithmic structure of the c = 0 CFT
generated by φ2,1 and raising the question of whether this CFT is compatible with that generated
by φ1,2. Specifically we note that in our physical interpretation of this correlation function,
the two different species of operators appear as either bulk or boundary operators, but never as
both. This allows a resolution of the co-existence issue and an explanation of the disagreement
between [14] and [16] predicting which logarithmic partner appears in the self-avoiding walk
and percolation models.

In what follows note that our Kac indices are in reverse order to those in [14] because we
use the SLE8/3 convention while they work with the dual SLE6 convention.

We begin with the sector of our CFT generated by the Verma module M2,1 of which φ2,1

with weight h2,1 = 0 is the highest weight state. Fusing this module with itself leads to a
variety of descendant modules

M2,1 × M2,1 = M1,1 + M3,1, (82)

M2,1 × M2,1 × M2,1 = M2,1 + I4,1, (83)

M2,1 × M2,1 × M2,1 × M2,1 = M1,1 + 3M3,1 + I5,1. (84)

Most notably we are interested in the staggered logarithmic module I5,1 which contains φ5,1,
a candidate for the logarithmic partner to the stress energy tensor.

The other potential logarithmic partner φ1,3, occurs in the sector generated by M1,2 with
highest weight h1,2 = 5/8,

M1,2 × M1,2 = I1,3. (85)

Each of the staggered modules I1,3 and I5,1 represent two distinct, but overlapping,
conformal channels. The logarithmic channel includes contributions from the identity 1, the
stress tensor T, and the logarithmic partner to the stress tensor φ := φ1,3 or φ5,1. The regular
channel only contains contributions from T and its descendants.

Conformal symmetry dictates that under the action of the Virasoro generators

L0|φ〉 = 2|φ〉 + |T 〉, L1|φ〉 = 0, L2|φ〉 = β|1〉, (86)

and fixes the forms of the two point functions,

〈φ(ξ)T (0)〉 = 〈T (ξ)φ(0)〉 = β/ξ 4, and 〈T (ξ)T (0)〉 = 0. (87)

There is also a type of gauge symmetry associated with the logarithmic partner because we
can let φ → φ + CT without changing the algebraic properties of φ. This symmetry raises
questions when two logarithmic families are fused, but plays no role in the quantities discussed
here.

The mixed two point function 〈φ1,3φ5,1〉 is undefinable. It cannot be consistently
normalized because the two constants β1,3 = 5/6 and β5,1 = −5/8 are not the same [16].
Thus M2,1 and M1,2 cannot both be included in a chiral theory; such a theory would contain
undefinable objects from I1,3 × I5,1. This means that there can be no pure bulk or boundary
theory containing both modules, but does not necessarily eliminate mixed cases, like the
present one, where one module resides in the bulk and the other in the boundary theory.
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Figure 7. Conformal blocks with respect to bulk–boundary fusion. Rectangles denote operators
and ovals denote fusion products. Boundary operators sit on double lines with bulk operators
above. The block with incompatible boundary operators is marked with an ‘X’. The physical block
is highlighted (green online).

We now identify the fusion channels associated with the conformal blocks of our
correlation function. The two conformal blocks in (75) are defined about σ = 1. We
can identify the blocks about σ = 0 using the crossing symmetry relation[

ρ + ρτ

(
1 − σ 2F1

(
1,

4

3
; 5

3

∣∣∣∣1 − σ

))]
B1

=
[
ρ + ρτ

(
1 + σ 2F1

(
1,

4

3
; 5

3

∣∣∣∣σ
))]

B3

−
[
(5/3)(2/3)ρτσ 1/3

(4/3)(1 − σ)2/3

]
B2

. (88)

We name the blocks according to the bracket labels in (88).
The limit σ → 1 can be achieved by taking both bulk operators to distinct boundary

points. Series expansions in orders of vA and vB show that B1 and B2 are conformal blocks
with exponent 0 = h1,1 and 1/3 = h3,1, respectively. So B1 is the conformal block with the
bulk operators fused to the boundary via the identity channel and B2 is the block with the bulk
operators fused to the boundary via φ3,1. Since a boundary theory cannot support both φ3,1

and φ1,2, the B2 block is problematic, as we will discuss shortly. These blocks are represented
graphically in the first row of figure 7.

On the other hand, the limit σ = 0 corresponds to fusing the bulk operators and
subsequently bringing the fusion product to the boundary. We identify the conformal blocks
in this limit by first expanding in orders of |sB − sA| 	 vA and then in orders of vA. We
find that B3 and B2 are the conformal blocks in this limit with leading terms proportional
to |sB − sA|0v0

A and |sB − sA|2/3v
4/3
A , respectively. This implies that block B3 represents the

fusion of the bulk operators to the identity, and the subsequent fusion to the boundary.
For blocks B2, the leading |sB − sA| exponent is 2/3 = 2h3,1, so the twist operators fuse

to a φ3,1. The leading vA exponent of 4/3 = 2 − 2h3,1 then indicates that the subsequent
bulk–boundary fusion is via a weight 2 operator. Of the fusion channels available to the φ3,1

fusion product only the regular channel of I5,1 has a weight 2 highest weight operator, namely
the stress tensor. Thus block B2 represents the fusion of the bulk operators through the φ3,1

channel and the subsequent fusion to the boundary via the T channel. Both of these blocks are
represented graphically in the second row of figure 7.

We now return to the B2 block, which we observed is poorly defined due to the inadmissible
bulk–boundary fusion channel as vA, vB → 0. In order to ensure consistency we must exclude
B2 from the set of σ → 1 conformal blocks. Instead of a two-dimensional solution space
we have only one solution, the block B1; an encouraging prospect since this is precisely the
physical solution we identified in section 4. Interestingly, B2 is not excluded from the set of
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σ → 0 conformal blocks, but instead appears only in the combination B3 − B2 = B1. Thus it
seems that the bulk fusion channel is fixed so that

φ2,1(r + δr)φ2,1(r) = 1(r) − C|δr|2/3φ3,1(r) + O(|δr|5/3), (89)

with C a fixed OPE coefficient. If they were to be taken on their own the blocks B2 or B3

would be divergent in the limit where u1 − u2 → ∞, thus their coupling seems natural.
The correlation function of an anchored loop with twist operators given in (25) was,

|F1,1(x)|2 − |F3,1(x)|2. This is also the identity block minus the φ3,1 block in agreement with
(89). At n = 0 the energy density operator φ3,1 is sensitive to local loops, acting as a 2-leg
operator. Thus (89) is the natural choice for the OPE of two twist operators: the identity gives
weight 1 to all the configurations except those where a path separates the twist operators and
these get a negative weight due to the φ3,1 term.

Now that we understand how the bulk operators couple to the boundary theory, we take a
minute to think of the boundary operators. The bulk operators fuse to the boundary through
the identity and stress tensor. For these blocks to be non-trivial the fusion of the φ1,2 operators
must contain 1 and/or φ1,3, thus occurring through the logarithmic channel. Even the two
point function on which we condition our SLE8/3 requires the logarithmic fusion channel.
This reinforces the assertion, made in [14], that the boundary LCFT describing self-avoiding
loops should contain the logarithmic partner φ1,3 with parameter β1,3 = 5/6.

While our results regarding the boundary theory are in agreement with the predictions of
Mathieu and Ridout, these predictions seem to contradict the earlier assertion of Gurarie and
Ludwig in [16] that the logarithmic partner to the stress tensor for the self-avoiding walk is
φ5,1. However, Gurarie and Ludwig made their assertion based on correlation functions of
bulk operators. In fact the results of [10] support the assertion of Gurarie and Ludwig. This is
because the conformal blocks used to assemble the correlation function in [10] are equivalent
to those appearing in the derivation for Cardy’s and Watts’ formulae, and it was argued in [14]
that the appearance of these blocks requires the inclusion of φ5,1 in the corresponding CFT.

Thus it seems that we desire a boundary LCFT with two logarithmic partners of T (z):
φ5,1 in the bulk, and φ1,3 on the boundary. This is possible if the bulk operators fuse to the
boundary exclusively via the identity module, as is the case for the three allowed conformal
blocks in figure 7. Specifically this is a statement about the bulk–boundary OPE for SLE type
conformal boundary conditions upon which φ1,2 can appear as a boundary condition changing
operator, it is possible that other boundary conditions exist which do not support φ1,2 and
which allow a fuller bulk–boundary fusion content.

5.1. The implications of this result on κ = 6 and critical percolation

In the case discussed above the bulk theory coupled to the boundary by the logarithmic
boundary channel with φ1,3. We may consider the consequence of insisting that fusions
instead occur through the φ5,1 channel. As we said in the previous section, without the φ1,3

channel the B1 block must be excluded, leaving B2 as the only solution. This alternate case
is speculated to correspond to critical percolation [14, 16], and we point out that this chiral
correlation function does indeed have a physical interpretation in this model.

In the remainder of this section we work in the SLE6 convention so that the Kac indices
in this section are reversed from those in the rest of the paper. Thus, in the percolation model
the four zero weight operators correspond to SLE operators φ1,2, and the first element of the
correlation function is a set of four paths attached to the boundary.

For the two 5/8-weight operators, note that the identification of φ2,1 as a twist operator
does not survive as we enter into the dense phase with κ > 4. In the dense phase each
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Figure 8. Using the same conventions as figure 7 we illustrate the potential conformal blocks of
our percolation correlation function.

bond on the medial lattice is occupied and there is no difference in loop parity between
different configurations, so φ2,1 belongs to the identity sector as the leading bulk energy
density operator, a role it takes over from φ3,1 in the dilute phase. In the Q-state Potts model
(of which percolation is the Q → 1 limit) the energy density operator indicates there are two
different species of spin locally. For two neighboring spins to be distinct the outer edges of
their respective clusters must pass between them, implying that a total of four legs emanate
from the energy density operator. At Q = 1 the weights of the loop configurations are
independent of our spin labels and the energy density operator becomes equivalent to the 4-leg
operator which was identified as φ0,2 in [17].

The configurations in the boundary percolation model described by the six-point function
〈φ1,2(x1)φ1,2(x2)φ1,2(x3)φ1,2(x4)φ2,1(z, z̄)〉 are those with four SLE type paths flowing toward
a single bulk point, which is a multiple radial SLE6. As we bring the bulk 4-leg operator to
the boundary we naturally expect its bulk–boundary fusion to have a boundary 4-leg operator
leading term corresponding to the boundary operator with weight h1,5 = 2. It is the regular
channel of φ2,1 × φ2,1 = I3,1 that has the weight 2 highest weight operator T.

This is indeed the fusion channel of the B2 block, which leads to the correlation function

Im(z)3/4[(x4 − x3)(x4 − x2)(x4 − x1)(x3 − x2)(x3 − x1)(x2 − x1)]1/3

|z − x4||z − x3||z − x2||z − x1| . (90)

We illustrate the single allowed conformal block B2 in figure 8.
Again we see that the allowed block is formed when the bulk CFT fuses to the boundary

CFT exclusively via the identity block. This rule leads to different unique solutions for the
SLE6 and SLE8/3 interpretation of our chiral correlation function due to the interchange of
bulk and boundary sub-theories between the two models. In both cases observing this rule is
sufficient to isolate the physical solution from the set of conformal blocks.

We end by suggesting that this construction may apply to a wider variety of extended
minimal model BCFTs. It is perhaps natural to assume that two different logarithmic partners
may reside in the bulk and on the boundary and that the consistency of the theory may be
based on restricting the allowed bulk–boundary fusions. But then the allowed fusion products
should include the entire minimal model Kac table, since we expect the extended CFT to
include the minimal model as a sub-sector. However, this is essentially what we have done
above, since the c = 0 minimal model is simply the identity.

6. Conclusions

In this paper we have assembled a variety of O(n) model correlation functions containing
twist operators. The correlation functions included correspond to: a loop anchored at two
points with a pair of twist operators, an SLE with a pair of twist operators and a double SLE
with a pair of twist operators. We then take these correlation functions in the n → 0 limit
where the O(n) model corresponds to self-avoiding loops or dilute polymers. We verify that

19



J. Phys. A: Math. Theor. 42 (2009) 235001 J J H Simmons and J Cardy

in this limit the twist operator can play the role of zero weight indicator operator introduced
by Schramm by confirming that the limiting forms of the SLE and twist operator correlation
functions are equivalent to known results using the indicator operator.

We then use the extra constraints imposed by the twist operator to solve the correlation
function of a new SLE type result with two identified bulk points. This result determines the
winding distribution of an SLE8/3 with respect to two marked boundary points.

In addition to determining a novel result for the self-avoiding walk, the calculation of the
conformal blocks for the chiral 6-point function 〈φ2,1φ2,1φ2,1φ2,1φ1,2φ1,2〉 allows us to discuss
a relevant problem in the logarithmic CFT with c = 0. The problem arises from the inability
of both M1,2 and M2,1 to exist in the same chiral theory, in spite of the fact that both of these
modules correspond to meaningful observables which can coexist in the self-avoiding loop
and percolation models, both of which correspond to c = 0. In this paper we conjecture that
the resolution to this apparent contradiction is that the two incompatible modules must belong
to different sectors whether bulk or boundary, and that the bulk–boundary fusions must be
through the identity channel common to both. This is consistent with the conformal blocks
found in the text and their interpretations as physical quantities. It is our intention to further
catalog the roles played by the logarithmic operators in both the CFTs of boundary percolation
and the self-avoiding loop in a forthcoming paper.

We further conjecture that this coexistence of incompatible modules on the bulk and
boundary may also apply to other extended minimal models such as the O(1) model with
c = 1/2 under the condition that the bulk–boundary fusions occur via the minimal model
subsector.
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